Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-987228

ABSTRACT

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Subject(s)
Flavivirus Infections/genetics , Flavivirus/physiology , Membrane Proteins/metabolism , Animals , Asian People/genetics , Autophagy , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , CRISPR-Cas Systems , Cell Line , Flavivirus Infections/immunology , Flavivirus Infections/metabolism , Flavivirus Infections/virology , Gene Knockout Techniques , Genome-Wide Association Study , Host-Pathogen Interactions , Humans , Immunity, Innate , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Virus Replication , Yellow fever virus/physiology , Zika Virus/physiology
2.
Virology ; 547: 35-46, 2020 08.
Article in English | MEDLINE | ID: covidwho-343623

ABSTRACT

Spondweni virus (SPONV) is the most closely related known flavivirus to Zika virus (ZIKV). Its pathogenic potential and vector specificity have not been well defined. SPONV has been found predominantly in Africa, but was recently detected in a pool of Culex quinquefasciatus mosquitoes in Haiti. Here we show that SPONV can cause significant fetal harm, including demise, comparable to ZIKV, in a mouse model of vertical transmission. Following maternal inoculation, we detected infectious SPONV in placentas and fetuses, along with significant fetal and placental histopathology, together suggesting vertical transmission. To test vector competence, we exposed Aedes aegypti and Culex quinquefasciatus mosquitoes to SPONV-infected bloodmeals. Aedes aegypti could efficiently transmit SPONV, whereas Culex quinquefasciatus could not. Our results suggest that SPONV has the same features that made ZIKV a public health risk.


Subject(s)
Aedes/virology , Flavivirus Infections/virology , Flavivirus/physiology , Mosquito Vectors/virology , Receptor, Interferon alpha-beta/genetics , Aedes/physiology , Animals , Disease Models, Animal , Female , Flavivirus/genetics , Flavivirus Infections/genetics , Flavivirus Infections/metabolism , Flavivirus Infections/mortality , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mosquito Vectors/physiology , Receptor, Interferon alpha-beta/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL